Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359.087
Filtrar
1.
J Math Biol ; 88(6): 60, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600396

RESUMO

One-dimensional discrete-time population models, such as those that involve Logistic or Ricker growth, can exhibit periodic and chaotic dynamics. Expanding the system by one dimension to incorporate epidemiological interactions causes an interesting complexity of new behaviors. Here, we examine a discrete-time two-dimensional susceptible-infectious (SI) model with Ricker growth and show that the introduction of infection can not only produce a distinctly different bifurcation structure than that of the underlying disease-free system but also lead to counter-intuitive increases in population size. We use numerical bifurcation analysis to determine the influence of infection on the location and types of bifurcations. In addition, we examine the appearance and extent of a phenomenon known as the 'hydra effect,' i.e., increases in total population size when factors, such as mortality, that act negatively on a population, are increased. Previous work, primarily focused on dynamics at fixed points, showed that the introduction of infection that reduces fecundity to the SI model can lead to a so-called 'infection-induced hydra effect.' Our work shows that even in such a simple two-dimensional SI model, the introduction of infection that alters fecundity or mortality can produce dynamics can lead to the appearance of a hydra effect, particularly when the disease-free population is at a cycle.


Assuntos
Epidemias , Dinâmica Populacional , Densidade Demográfica , Fertilidade , Modelos Biológicos
2.
Methods Mol Biol ; 2787: 69-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656482

RESUMO

This chapter presents a holistic and quantitative approach to the carbon cycle in plant systems biology. It includes (rapid) phenotyping and monitoring of physiological key interactions of plants with its respective soil and atmospheric environment (soil plant atmospheric continuum-SPAC). The approach aims at qualifying and quantifying key components of this microhabitat as influenced by a single plant or a local group of plants in order to contribute to a flux-based modelling approach. The toolset consists of plant biometry, gas exchange, metabolomics, ionomics, root exudate characterization as well as soil biological and physical-chemical characterization. The results are presented as a basic interaction and input-output model aka conceptual system model employing H. T. Odum-style plots based on empirical data.


Assuntos
Atmosfera , Plantas , Solo , Solo/química , Plantas/metabolismo , Atmosfera/química , Fenótipo , Modelos Biológicos , Ciclo do Carbono , Metabolômica/métodos , Raízes de Plantas/metabolismo , Ecossistema
3.
J Math Biol ; 88(6): 68, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661851

RESUMO

The coexistence of multiple phytoplankton species despite their reliance on similar resources is often explained with mean-field models assuming mixed populations. In reality, observations of phytoplankton indicate spatial aggregation at all scales, including at the scale of a few individuals. Local spatial aggregation can hinder competitive exclusion since individuals then interact mostly with other individuals of their own species, rather than competitors from different species. To evaluate how microscale spatial aggregation might explain phytoplankton diversity maintenance, an individual-based, multispecies representation of cells in a hydrodynamic environment is required. We formulate a three-dimensional and multispecies individual-based model of phytoplankton population dynamics at the Kolmogorov scale. The model is studied through both simulations and the derivation of spatial moment equations, in connection with point process theory. The spatial moment equations show a good match between theory and simulations. We parameterized the model based on phytoplankters' ecological and physical characteristics, for both large and small phytoplankton. Defining a zone of potential interactions as the overlap between nutrient depletion volumes, we show that local species composition-within the range of possible interactions-depends on the size class of phytoplankton. In small phytoplankton, individuals remain in mostly monospecific clusters. Spatial structure therefore favours intra- over inter-specific interactions for small phytoplankton, contributing to coexistence. Large phytoplankton cell neighbourhoods appear more mixed. Although some small-scale self-organizing spatial structure remains and could influence coexistence mechanisms, other factors may need to be explored to explain diversity maintenance in large phytoplankton.


Assuntos
Simulação por Computador , Ecossistema , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Dinâmica Populacional , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Dinâmica Populacional/estatística & dados numéricos , Biodiversidade
4.
Biol Pharm Bull ; 47(4): 861-867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644196

RESUMO

Taguchi et al. reported that postmenstrual age (PMA) is a promising factor in describing and understanding the developmental change of caffeine (CAF) clearance. The aim of the present study was to quantify how developmental changes occur and to determine the effect of the length of the gestational period on CAF clearance. We performed a nonlinear mixed effect model (NONMEM) analysis and evaluated the fit of six models. A total of 115 samples were obtained from 52 patients with a mean age of 34.3 ± 18.2 d. The median values of gestational age (GA) and postnatal age (PNA) were 196 and 31 d, respectively. Serum CAF levels corrected for dose per body surface area (BSA) (C/D ratioBSA) were dependent on PMA rather than PNA, which supports the findings of a previous study. NONMEM analysis provided the following final model of oral clearance: CL/F = 0.00603∙WT∙∙0.877GA ≤ 196 L/h. This model takes into account developmental changes during prenatal and postnatal periods separately. The model successfully described the variation in clearance of CAF. Our findings suggest that the dosage of CAF in preterm infants should be determined based not only on body weight (WT) but also on both PNA and GA.


Assuntos
Cafeína , Idade Gestacional , Recém-Nascido Prematuro , Modelos Biológicos , Humanos , Cafeína/sangue , Cafeína/farmacocinética , Cafeína/administração & dosagem , Feminino , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Prematuro/sangue , Masculino , Gravidez , Estimulantes do Sistema Nervoso Central/sangue , Estimulantes do Sistema Nervoso Central/farmacocinética , Estimulantes do Sistema Nervoso Central/administração & dosagem
5.
J Math Biol ; 88(6): 69, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664246

RESUMO

Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.


Assuntos
Encéfalo , Líquido Extracelular , Líquido Extracelular/metabolismo , Líquido Extracelular/fisiologia , Porosidade , Humanos , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Membrana Basal/metabolismo , Membrana Basal/fisiologia , Conceitos Matemáticos , Transporte Biológico/fisiologia , Modelos Biológicos , Simulação por Computador , Modelos Neurológicos , Animais , Permeabilidade
6.
Bull Math Biol ; 86(6): 63, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664322

RESUMO

In this study, we present a mathematical model for plasmid spread in a growing biofilm, formulated as a nonlocal system of partial differential equations in a 1-D free boundary domain. Plasmids are mobile genetic elements able to transfer to different phylotypes, posing a global health problem when they carry antibiotic resistance factors. We model gene transfer regulation influenced by nearby potential receptors to account for recipient-sensing. We also introduce a promotion function to account for trace metal effects on conjugation, based on literature data. The model qualitatively matches experimental results, showing that contaminants like toxic metals and antibiotics promote plasmid persistence by favoring plasmid carriers and stimulating conjugation. Even at higher contaminant concentrations inhibiting conjugation, plasmid spread persists by strongly inhibiting plasmid-free cells. The model also replicates higher plasmid density in biofilm's most active regions.


Assuntos
Biofilmes , Transferência Genética Horizontal , Conceitos Matemáticos , Modelos Biológicos , Modelos Genéticos , Plasmídeos , Biofilmes/crescimento & desenvolvimento , Plasmídeos/genética , Conjugação Genética , Antibacterianos/farmacologia
7.
Bull Math Biol ; 86(6): 64, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664343

RESUMO

We introduce in this paper substantial enhancements to a previously proposed hybrid multiscale cancer invasion modelling framework to better reflect the biological reality and dynamics of cancer. These model updates contribute to a more accurate representation of cancer dynamics, they provide deeper insights and enhance our predictive capabilities. Key updates include the integration of porous medium-like diffusion for the evolution of Epithelial-like Cancer Cells and other essential cellular constituents of the system, more realistic modelling of Epithelial-Mesenchymal Transition and Mesenchymal-Epithelial Transition models with the inclusion of Transforming Growth Factor beta within the tumour microenvironment, and the introduction of Compound Poisson Process in the Stochastic Differential Equations that describe the migration behaviour of the Mesenchymal-like Cancer Cells. Another innovative feature of the model is its extension into a multi-organ metastatic framework. This framework connects various organs through a circulatory network, enabling the study of how cancer cells spread to secondary sites.


Assuntos
Transição Epitelial-Mesenquimal , Conceitos Matemáticos , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias , Microambiente Tumoral , Humanos , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/patologia , Processos Estocásticos , Movimento Celular , Fator de Crescimento Transformador beta/metabolismo , Simulação por Computador , Distribuição de Poisson
8.
Sci Rep ; 14(1): 9556, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664465

RESUMO

Bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), black carp (Mylopharyngodon piceus), and grass carp (Ctenopharyngodon idella), are invasive species in North America. However, they hold significant economic importance as food sources in China. The drifting stage of carp eggs has received great attention because egg survival rate is strongly affected by river hydrodynamics. In this study, we explored egg-drift dynamics using computational fluid dynamics (CFD) models to infer potential egg settling zones based on mechanistic criteria from simulated turbulence in the Lower Missouri River. Using an 8-km reach, we simulated flow characteristics with four different discharges, representing 45-3% daily flow exceedance. The CFD results elucidate the highly heterogeneous spatial distribution of flow velocity, flow depth, turbulence kinetic energy (TKE), and the dissipation rate of TKE. The river hydrodynamics were used to determine potential egg settling zones using criteria based on shear velocity, vertical turbulence intensity, and Rouse number. Importantly, we examined the difference between hydrodynamic-inferred settling zones and settling zones predicted using an egg-drift transport model. The results indicate that hydrodynamic inference is useful in determining the 'potential' of egg settling, however, egg drifting paths should be taken into account to improve prediction. Our simulation results also indicate that the river turbulence does not surpass the laboratory-identified threshold to pose a threat to carp eggs.


Assuntos
Carpas , Hidrodinâmica , Rios , Animais , Carpas/fisiologia , Espécies Introduzidas , Óvulo/fisiologia , Modelos Biológicos , Modelos Teóricos
9.
BMC Bioinformatics ; 25(1): 166, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664639

RESUMO

BACKGROUND: The Biology System Description Language (BiSDL) is an accessible, easy-to-use computational language for multicellular synthetic biology. It allows synthetic biologists to represent spatiality and multi-level cellular dynamics inherent to multicellular designs, filling a gap in the state of the art. Developed for designing and simulating spatial, multicellular synthetic biological systems, BiSDL integrates high-level conceptual design with detailed low-level modeling, fostering collaboration in the Design-Build-Test-Learn cycle. BiSDL descriptions directly compile into Nets-Within-Nets (NWNs) models, offering a unique approach to spatial and hierarchical modeling in biological systems. RESULTS: BiSDL's effectiveness is showcased through three case studies on complex multicellular systems: a bacterial consortium, a synthetic morphogen system and a conjugative plasmid transfer process. These studies highlight the BiSDL proficiency in representing spatial interactions and multi-level cellular dynamics. The language facilitates the compilation of conceptual designs into detailed, simulatable models, leveraging the NWNs formalism. This enables intuitive modeling of complex biological systems, making advanced computational tools more accessible to a broader range of researchers. CONCLUSIONS: BiSDL represents a significant step forward in computational languages for synthetic biology, providing a sophisticated yet user-friendly tool for designing and simulating complex biological systems with an emphasis on spatiality and cellular dynamics. Its introduction has the potential to transform research and development in synthetic biology, allowing for deeper insights and novel applications in understanding and manipulating multicellular systems.


Assuntos
Biologia Sintética , Biologia Sintética/métodos , Modelos Biológicos , Linguagens de Programação , Biologia de Sistemas/métodos , Software
10.
J Biomed Semantics ; 15(1): 4, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664818

RESUMO

BACKGROUND: Pathogenic parasites are responsible for multiple diseases, such as malaria and Chagas disease, in humans and livestock. Traditionally, pathogenic parasites have been largely an evasive topic for vaccine design, with most successful vaccines only emerging recently. To aid vaccine design, the VIOLIN vaccine knowledgebase has collected vaccines from all sources to serve as a comprehensive vaccine knowledgebase. VIOLIN utilizes the Vaccine Ontology (VO) to standardize the modeling of vaccine data. VO did not model complex life cycles as seen in parasites. With the inclusion of successful parasite vaccines, an update in parasite vaccine modeling was needed. RESULTS: VIOLIN was expanded to include 258 parasite vaccines against 23 protozoan species, and 607 new parasite vaccine-related terms were added to VO since 2022. The updated VO design for parasite vaccines accounts for parasite life stages and for transmission-blocking vaccines. A total of 356 terms from the Ontology of Parasite Lifecycle (OPL) were imported to VO to help represent the effect of different parasite life stages. A new VO class term, 'transmission-blocking vaccine,' was added to represent vaccines able to block infectious transmission, and one new VO object property, 'blocks transmission of pathogen via vaccine,' was added to link vaccine and pathogen in which the vaccine blocks the transmission of the pathogen. Additionally, our Gene Set Enrichment Analysis (GSEA) of 140 parasite antigens used in the parasitic vaccines identified enriched features. For example, significant patterns, such as signal, plasma membrane, and entry into host, were found in the antigens of the vaccines against two parasite species: Plasmodium falciparum and Toxoplasma gondii. The analysis found 18 out of the 140 parasite antigens involved with the malaria disease process. Moreover, a majority (15 out of 54) of P. falciparum parasite antigens are localized in the cell membrane. T. gondii antigens, in contrast, have a majority (19/24) of their proteins related to signaling pathways. The antigen-enriched patterns align with the life cycle stage patterns identified in our ontological parasite vaccine modeling. CONCLUSIONS: The updated VO modeling and GSEA analysis capture the influence of the complex parasite life cycles and their associated antigens on vaccine development.


Assuntos
Ontologias Biológicas , Animais , Parasitos/imunologia , Vacinas Protozoárias/imunologia , Humanos , Vacinas/imunologia , Modelos Biológicos
11.
Eur J Drug Metab Pharmacokinet ; 49(3): 393-403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642299

RESUMO

BACKGROUND AND OBJECTIVE: The prediction of pharmacokinetic parameters for drugs metabolised by cytochrome P450 enzymes has been the subject of active research for many years, while the application of in vitro-in vivo extrapolation (IVIVE) techniques for non-cytochrome P450 enzymes has not been thoroughly evaluated. There is still no established quantitative method for predicting hepatic clearance of drugs metabolised by uridine 5'-diphospho-glucuronosyltransferases (UGTs), not to mention those which undergo hepatic uptake. The objective of the study was to predict the human hepatic clearance for telmisartan based on in vitro metabolic stability and hepatic uptake results. METHODS: Telmisartan was examined in liver systems, allowing to estimate intrinsic clearance (CLint, in vitro) based on the substrate disappearance rate with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Obtained CLint, in vitro values were corrected for corresponding unbound fractions. Prediction of human hepatic clearance was made from scaled unbound CLint, in vitro data with the use of the well-stirred model, and finally referenced to the literature value of observed clearance in humans, allowing determination of the essential scaling factors. RESULTS: The in vitro scaled CLint, in vitro by UGT1A3 was assessed using three systems, human hepatocytes, liver microsomes, and recombinant enzymes. Obtained values were scaled and hepatic metabolism clearance was predicted, resulting in significant clearance underprediction. Utilization of the extended clearance concept (ECC) and hepatic uptake improved prediction of hepatic metabolism clearance. The scaling factors for hepatocytes, assessing the in vitro-in vivo difference, changed from sixfold difference to only twofold difference with the application of the ECC. CONCLUSIONS: The study showed that taking into consideration hepatic uptake of a drug allows us to obtain satisfactory scaling factors, hence enabling the prediction of in vivo hepatic glucuronidation from in vitro data.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Telmisartan , Glucuronosiltransferase/metabolismo , Telmisartan/farmacocinética , Telmisartan/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Fígado/metabolismo , Fígado/enzimologia , Taxa de Depuração Metabólica , Espectrometria de Massas em Tandem/métodos , Hepatócitos/metabolismo , Modelos Biológicos , Cromatografia Líquida/métodos , Benzoatos/farmacocinética , Benzoatos/metabolismo
12.
PLoS One ; 19(4): e0297476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635754

RESUMO

This paper mainly addressed the study of the transmission dynamics of infectious diseases and analysed the effect of two different types of viruses simultaneously that cause immunodeficiency in the host. The two infectious diseases that often spread in the populace are HIV and measles. The interaction between measles and HIV can cause severe illness and even fatal patient cases. The effects of the measles virus on the host with HIV infection are studied using a mathematical model and their dynamics. Analysing the dynamics of infectious diseases in communities requires the use of mathematical models. Decisions about public health policy are influenced by mathematical modeling, which sheds light on the efficacy of various control measures, immunization plans, and interventions. We build a mathematical model for disease spread through vertical and horizontal human population transmission, including six coupled nonlinear differential equations with logistic growth. The fundamental reproduction number is examined, which serves as a cutoff point for determining the degree to which a disease will persist or die. We look at the various disease equilibrium points and investigate the regional stability of the disease-free and endemic equilibrium points in the feasible region of the epidemic model. Concurrently, the global stability of the equilibrium points is investigated using the Lyapunov functional approach. Finally, the Runge-Kutta method is utilised for numerical simulation, and graphic illustrations are used to evaluate the impact of different factors on the spread of the illness. Critical factors that effect the dynamics of disease transmission and greatly affect the rate and range of the disease's spread in the population have been determined through a thorough analysis. These factors are crucial in determining the expansion of the disease.


Assuntos
Doenças Transmissíveis , Infecções por HIV , Sarampo , Humanos , Modelos Biológicos , Modelos Teóricos , Doenças Transmissíveis/epidemiologia , Sarampo/prevenção & controle
13.
New Phytol ; 242(4): 1448-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581203

RESUMO

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Assuntos
Evolução Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiologia , Micorrizas/genética , Ecologia , Simbiose/genética , Basidiomycota/fisiologia , Basidiomycota/genética
15.
J Math Biol ; 88(6): 66, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639778

RESUMO

We consider a population organised hierarchically with respect to size in such a way that the growth rate of each individual depends only on the presence of larger individuals. As a concrete example one might think of a forest, in which the incidence of light on a tree (and hence how fast it grows) is affected by shading by taller trees. The classic formulation of a model for such a size-structured population employs a first order quasi-linear partial differential equation equipped with a non-local boundary condition. However, the model can also be formulated as a delay equation, more specifically a scalar renewal equation, for the population birth rate. After discussing the well-posedness of the delay formulation, we analyse how many stationary birth rates the equation can have in terms of the functional parameters of the model. In particular we show that, under reasonable and rather general assumptions, only one stationary birth rate can exist besides the trivial one (associated to the state in which there are no individuals and the population birth rate is zero). We give conditions for this non-trivial stationary birth rate to exist and analyse its stability using the principle of linearised stability for delay equations. Finally, we relate the results to the alternative, partial differential equation formulation of the model.


Assuntos
Coeficiente de Natalidade , Modelos Biológicos , Humanos , Dinâmica Populacional
16.
J Transl Med ; 22(1): 381, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654380

RESUMO

BACKGROUND: Gastric cancer (GC) is a common and aggressive type of cancer worldwide. Despite recent advancements in its treatment, the prognosis for patients with GC remains poor. Understanding the mechanisms of cell death in GC, particularly those related to mitochondrial function, is crucial for its development and progression. However, more research is needed to investigate the significance of the interaction between mitochondrial function and GC cell death. METHODS: We employed a robust computational framework to investigate the role of mitochondria-associated proteins in the progression of GC in a cohort of 1,199 GC patients. Ten machine learning algorithms were utilized and combined into 101 unique combinations. Ultimately, we developed a Mitochondrial-related-Score (MitoScore) using the machine learning model that exhibited the best performance. We observed the upregulation of LEMT2 and further explored its function in tumor progression. Mitochondrial functions were assessed by measuring mitochondrial ATP, mitochondrial membrane potential, and levels of lactate, pyruvate, and glucose. RESULTS: MitoScore showed significant correlations with GC immune and metabolic functions. The higher MitoScore subgroup exhibited enriched metabolic pathways and higher immune activity. Overexpression of LETM2 (leucine zipper and EF-hand containing transmembrane protein 2) significantly enhanced tumor proliferation and metastasis. LETM2 plays a role in promoting GC cell proliferation by activating the mTOR pathway, maintaining mitochondrial homeostasis, and promoting glycolysis. CONCLUSION: The powerful machine learning framework highlights the significant potential of MitoScore in providing valuable insights and accurate assessments for individuals with GC. This study also enhances our understanding of LETM2 as an oncogene signature in GC. LETM2 may promote tumor progression by maintaining mitochondrial health and activating glycolysis, offering potential targets for diagnosis, treatment, and prognosis of GC.


Assuntos
Aprendizado de Máquina , Mitocôndrias , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Mitocôndrias/metabolismo , Prognóstico , Estudos de Coortes , Masculino , Feminino , Modelos Biológicos , Proliferação de Células , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Multiômica
17.
Proc Biol Sci ; 291(2021): 20232468, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654648

RESUMO

The interplay of host-parasite and predator-prey interactions is critical in ecological dynamics because both predators and parasites can regulate communities. But what is the prevalence of infected prey and predators when a parasite is transmitted through trophic interactions considering stochastic demographic changes? Here, we modelled and analysed a complex predator-prey-parasite system, where parasites are transmitted from prey to predators. We varied parasite virulence and infection probabilities to investigate how those evolutionary factors determine species' coexistence and populations' composition. Our results show that parasite species go extinct when the infection probabilities of either host are small and that success in infecting the final host is more critical for the survival of the parasite. While our stochastic simulations are consistent with deterministic predictions, stochasticity plays an important role in the border regions between coexistence and extinction. As expected, the proportion of infected individuals increases with the infection probabilities. Interestingly, the relative abundances of infected and uninfected individuals can have opposite orders in the intermediate and final host populations. This counterintuitive observation shows that the interplay of direct and indirect parasite effects is a common driver of the prevalence of infection in a complex system.


Assuntos
Cadeia Alimentar , Interações Hospedeiro-Parasita , Comportamento Predatório , Animais , Parasitos/fisiologia , Modelos Biológicos , Dinâmica Populacional
18.
Am J Bot ; 111(4): e16316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659131

RESUMO

Soil microorganisms play a critical role in shaping the biodiversity dynamics of plant communities. These microbial effects can arise through direct mediation of plant fitness by pathogens and mutualists, and over the past two decades, numerous studies have shined a spotlight on the role of dynamic feedbacks between plants and soil microorganisms as key determinants of plant species coexistence. Such feedbacks occur when plants modify the composition of the soil community, which in turn affects plant performance. Stimulated by a theoretical model developed in the 1990s, a bulk of the empirical evidence for microbial controls over plant coexistence comes from experiments that quantify plant growth in soil communities that were previously conditioned by conspecific or heterospecific plants. These studies have revealed that soil microbes can generate strong negative to positive frequency-dependent dynamics among plants. Even as soil microbes have become recognized as a key player in determining plant coexistence outcomes, the past few years have seen a renewed interest in expanding the conceptual foundations of this field. New results include re-interpretations of key metrics from classic two-species models, extensions of plant-soil feedback theory to multispecies communities, and frameworks to integrate plant-soil feedbacks with processes like intra- and interspecific competition. Here, I review the implications of theoretical developments for interpreting existing empirical results and highlight proposed analyses and designs for future experiments that can enable a more complete understanding of microbial regulation of plant community dynamics.


Assuntos
Plantas , Microbiologia do Solo , Plantas/microbiologia , Modelos Biológicos , Biodiversidade
19.
Proc Natl Acad Sci U S A ; 121(18): e2309733121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662546

RESUMO

Animals moving together in groups are believed to interact among each other with effective social forces, such as attraction, repulsion, and alignment. Such forces can be inferred using "force maps," i.e., by analyzing the dependency of the acceleration of a focal individual on relevant variables. Here, we introduce a force map technique suitable for the analysis of the alignment forces experienced by individuals. After validating it using an agent-based model, we apply the force map to experimental data of schooling fish. We observe signatures of an effective alignment force with faster neighbors and an unexpected antialignment with slower neighbors. Instead of an explicit antialignment behavior, we suggest that the observed pattern is the result of a selective attention mechanism, where fish pay less attention to slower neighbors. This mechanism implies the existence of temporal leadership interactions based on relative speeds between neighbors. We present support for this hypothesis both from agent-based modeling as well as from exploring leader-follower relationships in the experimental data.


Assuntos
Comportamento Social , Animais , Comportamento Animal/fisiologia , Liderança , Peixes/fisiologia , Modelos Biológicos , Interação Social , Natação
20.
Cells ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667310

RESUMO

Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.


Assuntos
Neoplasias Mamárias Animais , Animais , Cães , Neoplasias Mamárias Animais/patologia , Feminino , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodos , Humanos , Modelos Biológicos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...